Hazard Alert Code: MODERATE

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 1 of 18

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME Dunlop Carpet Adhesive

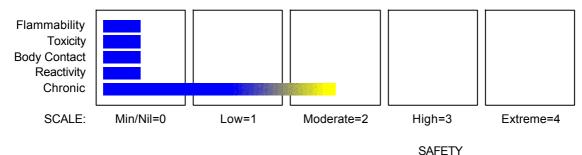
SYNONYMS "water based acrylic resin adhesive", "carpet adhesive"

PRODUCT USE

Adhesive for installing carpet on interior subfloors.

SUPPLIER

Company: Ardex Australia Pty Ltd Address: 20 Powers Road Seven Hills NSW, 2147 Australia Telephone: 1800 224 070 Emergency Tel:**1800 222 841 (General Information -**


Fax: +61 2 9838 7817

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

NON-HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

CHEMWATCH HAZARD RATINGS

RISK

■ Cumulative effects may result following exposure*.

* (limited evidence).

continued...

• Avoid contact with skin.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 2 of 18

Section 3 - COMPOSITION / INFORMATIO	ON ON INGREDIENTS		
NAME	CAS RN	%	
synthetic latex emulsion		15-25	
resin		15-25	
fillers		15-25	
plasticiser		10-20	
hydrocarbon solvent, as		3-5	
toluene	108-88-3		
white spirit	8052-41-3.	1-3	
water	7732-18-5	10-30	

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

EYE

- If this product comes in contact with eyes:
- · Wash out immediately with water.
- If irritation continues, seek medical attention.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 3 of 18 Section 5 - FIRE FIGHTING MEASURES

• Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD

• Non combustible.

• Not considered a significant fire risk, however containers may burn. May emit poisonous fumes.

FIRE INCOMPATIBILITY

None known.

HAZCHEM

None

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: 1.BUTYL 2.NEOPRENE 3.VITON Respirator: Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Wear impervious gloves and safety goggles.
- Trowel up/scrape up.
- Place spilled material in clean, dry, sealed container.
- Flush spill area with water.

MAJOR SPILLS

Minor hazard.

- · Clear area of personnel.
- Alert Fire Brigade and tell them location and nature of hazard.
- · Control personal contact by using protective equipment as required.
- Prevent spillage from entering drains or water ways.
- · Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labelled containers for recycling.
- · Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal.
- Wash area and prevent runoff into drains or waterways.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 4 of 18 Section 7 - HANDLING AND STORAGE

- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

SUITABLE CONTAINER

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY

None known.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- +: May be stored together
- O: May be stored together with specific preventions
- X: Must not be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Source	Material	TWA ppm	n TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Australia Exposure	toluene (Toluene)	50	191	150	574				Sk
Standards Australia Exposure Standards	white spirit (White spirits)		790						(see Chapter 16)

Hazard Alert Code: MODERATE

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

CHEMWATCH 4661-32 Version No:4

CD 2011/2 Page 5 of 18 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Australia Exposure Standards	white spirit (Petrol (gasoline))		900						(see Chapter 16)
The following material	Is had no OELs on our reco	ords							
• water:				CAS:7732	- 18- 5				
EMERGENCY E	EXPOSURE LIMITS								
Material	Revised IDLH Value (m	g/m³)		ed IDLH Va	alue (ppm)				
toluene	84		500						
white spirit 20342	20,000		4						
white spirit	1		1,000						
white spirit	1		1,100	[LEL]					

NOTES

Values marked LEL indicate that the IDLH was based on 10% of the lower explosive limit for safety considerations even though the relevant toxicological data indicated that irreversible health effects or impairment of escape existed only at higher concentrations.

ODOUR SAFETY FACTOR (OSF)

OSF=0.042 (white spirit)

■ Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

Class	OSF	Description
A	550	Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV- TWA for example) is being reached, even when distracted by working activities
В	26- 550	As " A" for 50- 90% of persons being distracted
С	1-26	As " A" for less than 50% of persons being distracted
D	0.18- 1	10- 50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
E	<0.18	As " D" for less than 10% of persons aware of being tested

Hazard Alert Code: MODERATE

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 6 of 18 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

MATERIAL DATA

TOLUENE:

For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available.

High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known.

Odour Safety Factor(OSF)

OSF=17 (TOLUENE).

Exposure limits with "skin" notation indicate that vapour and liquid may be absorbed through intact skin. Absorption by skin may readily exceed vapour inhalation exposure. Symptoms for skin absorption are the same as for inhalation. Contact with eyes and mucous membranes may also contribute to overall exposure and may also invalidate the exposure standard.

WHITE SPIRIT:

■ for benzene

Odour Threshold Value: 34 ppm (detection), 97 ppm (recognition)

NOTE: Detector tubes for benzene, measuring in excess of 0.5 ppm, are commercially available. The relative quality of epidemiological data and quantitative health risk assessments related to documented and theoretical leukaemic deaths constitute the basis of the TLV-recommendation.

One study [Dow Chemical] demonstrates a significant fourfold increase in myelogenous leukaemia for workers exposed to average benzene concentrations of about 5 ppm for an average of 9 years and that 2 out of four individuals in the study who died from leukaemia were characterised as having been exposed to average benzene levels below 2 ppm. Based on such findings the estimated risk of leukaemia in workers exposed at daily benzene concentrations of 10 ppm for 40 years is 155 times that of unexposed workers; at 1 ppm the risk falls to 1.7 times whilst at 0.1 ppm the risk is about the same in the two groups. A revision of the TLV-TWA to 0.1 ppm was proposed in 1990 but this has been revised upwards as result of industry initiatives.

Typical toxicities displayed following inhalation:

- At 25 ppm (8 hours): no effect
- 50-150 ppm: signs of intoxication within 5 hours
- 500-1500 ppm: signs of intoxication within 1 hour
- 7500 ppm: severe intoxication within 30-60 minutes
- 20000 ppm: fatal within 5-10 minutes

Some jurisdictions require that health surveillance be conducted on occupationally exposed workers. Some surveillance should emphasise (i) demography, occupational and medical history and health advice (ii) baseline blood sample for haematological profile (iii) records of personal exposure.

Odour threshold: 0.25 ppm.

The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties.

Odour Safety Factor (OSF) OSF=0.042 (gasoline). For white spirit:

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 7 of 18 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Low and high odour thresholds of 5.25 and 157.5 mg/m3, respectively, were considered to provide a rather useful index of odour as a warning property.

The TLV-TWA is calculated from data on the toxicities of the major ingredients and is intended to minimise the potential for irritative and narcotic effects, polyneuropathy and kidney damage produced by vapours.

The NIOSH (USA) REL-TWA of 60 ppm is the same for all refined petroleum solvents. NIOSH published an occupational "action level" of 350 mg/m3 for exposure to Stoddard solvent, assuming a 10-hour work shift and a 40-hour work-week. The NIOSH-REL ceiling of 1800 mg/m3 was established to protect workers from short-term effects that might produce vertigo or other adverse effects which might increase the risk of occupational accidents. Combined (gross) percutaneous absorption and inhalation exposure (at concentrations associated with nausea) are thought, by some, to be responsible for the development of frank hepatic toxicity and jaundice.

Odour Safety Factor (OSF) OSF=0.042 (white spirit).

WATER:

■ No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

EYE

- · Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Hazard Alert Code: MODERATE

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 8 of 18 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

RESPIRATOR

• type a filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Welldesigned engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and

Ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: solvent, vapours, degreasing etc., evaporating from tank (in still air)	Air Speed: 0.25- 0.5 m/s (50- 100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5- 1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1- 2.5 m/s (200- 500 f/min)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5- 10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range 1: Room air currents minimal or favourable to capture Upper end of the range 1: Disturbing room air currents

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 9 of 18 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

2: Contaminants of low toxicity or of nuisance value only

3: Intermittent, low production.

4: Large hood or large air mass in motion

3: High production, heavy use 4: Small hood - local control only

2: Contaminants of high toxicity

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Off-white cream with a slight odour; mixes with water.

PHYSICAL PROPERTIES

log Kow (Sangster 1997):

Mixes with water.

State	Non Slump Paste	Molecular Weight	Not Applicable
Melting Range (°C)	Not Available	Viscosity	Not Available
Boiling Range (°C)	100	Solubility in water (g/L)	Miscible
Flash Point (°C)	Not Applicable	pH (1% solution)	Not Available
Decomposition Temp (°C)	Not Available	pH (as supplied)	Not Available
Autoignition Temp (°C)	Not Applicable	Vapour Pressure (kPa)	Not Available
Upper Explosive Limit (%)	Not Applicable	Specific Gravity (water=1)	1.05
Lower Explosive Limit (%)	Not Applicable	Relative Vapour Density (air=1)	Not Available
Volatile Component (%vol)	51 approx.	Evaporation Rate	Not Available
toluene			

2.73

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY

■ Product is considered stable and hazardous polymerisation will not occur. For incompatible materials - refer to Section 7 - Handling and Storage.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 10 of 18

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (eg. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

EYE

■ Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

SKIN

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

CHRONIC HEALTH EFFECTS

■ Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

DUNLOP CARPET ADHESIVE: Not available. Refer to individual constituents.

TOLUENE: TOXICITY Oral (human) LDLo: 50 mg/kg Oral (rat) LD50: 636 mg/kg Inhalation (human) TCLo: 100 ppm Inhalation (man) TCLo: 200 ppm Inhalation (rat) LC50: >26700 ppm/1h Dermal (rabbit) LD50: 12124 mg/kg

IRRITATION Skin (rabbit):20 mg/24h- Moderate Skin (rabbit):500 mg - Moderate Eye (rabbit):0.87 mg - Mild Eye (rabbit): 2mg/24h - SEVERE Eye (rabbit):100 mg/30sec - Mild

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 11 of 18 Section 11 - TOXICOLOGICAL INFORMATION

redness, swelling, the production of vesicles, scaling and thickening of the skin.

For toluene: Acute Toxicity

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.

Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy.

Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.

Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea . Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death Toluene can also strip the skin of lipids causing dermatitis

Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days

Subchronic/Chronic Effects:

Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm. Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin.

Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day).

Developmental/Reproductive Toxicity

Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals.

Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy

Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 12 of 18 Section 11 - TOXICOLOGICAL INFORMATION

Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.

Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene.

Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues . Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure.

WHITE SPIRIT: TOXICITY Inhalation (human) TCLo: 600 mg/m³/8h Oral (rat) LD50: >5000 mg/kg Inhalation (rat) LC50: >5500 mg/m³/4h

IRRITATION Nil Reported Eye (human): 470 ppm/15m Eye (rabbit): 500 mg/24h Moderate

■ for petroleum:

This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic.

This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss.

This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays.

Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed.

Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials.

Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans.

white spirit, as CAS RN 8052-41-3

WATER:

No significant acute toxicological data identified in literature search.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 **CHEMWATCH 4661-32** NC317TCP Version No:4 CD 2011/2 Page 13 of 18 Section 11 - TOXICOLOGICAL INFORMATION CARCINOGEN Toluene International Agency for Research on Cancer Group 3 (IARC) - Agents Reviewed by the IARC Monographs Crude oil International Agency for Research on Cancer 3 Group (IARC) - Agents Reviewed by the IARC Monographs REPROTOXIN ILO Chemicals in the toluene Reduced fertility or electronics industry sterility that have toxic effects on reproduction SKIN Sk toluene Notes Australia Exposure

Section 12 - ECOLOGICAL INFORMATION

Standards - Skin

WHITE SPIRIT:

TOLUENE: DO NOT discharge into sewer or waterways.

TOLUENE:

For toluene: log Kow : 2.1-3 log Koc : 1.12-2.85 Koc : 37-260 log Kom : 1.39-2.89 Half-life (hr) air : 2.4-104 Half-life (hr) H2O surface water : 5.55-528 Half-life (hr) H2O ground : 168-2628 : <48-240 Half-life (hr) soil Henry's Pa m3 /mol: 518-694 Henry's atm m3 /mol: 5.94E-03 BOD 5 0.86-2.12, 5% COD : 0.7-2.52,21-27% ThOD : 3.13 BCF : 1.67-380 : 0.22-3.28 log BCF Environmental fate:

Transport: The majority of toluene evaporates to the atmosphere from the water and soil. It is moderately retarded by adsorption to soils rich in organic material (Koc = 259), therefore, transport to ground water is dependent on the soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilised, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. Transformation/Persistence:

Air - The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced

Hazard Alert Code: MODERATE

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 14 of 18 Section 12 - ECOLOGICAL INFORMATION

hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidised by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene Soil - In surface soil, volatilisation to air is an important fate process for toluene. Biodegradation of toluene has been demonstrated in the laboratory to occur with a half life of about 1 hour. In the environment,

biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Water - An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water .The volatilisation of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal .

Biota - Bioaccumulation in most organisms is limited by the metabolism of toluene into more polar compounds that have greater water solubility and a lower affinity for lipids. Bioaccumulation in the food chain is predicted to be low.

Ecotoxicity:

Toluene has moderate acute toxicity to aquatic organisms; several toxicity values are in the range of greater than 1 mg/L and 100 mg/L.

Fish LC50 (96 h): fathead minnow (Pimephales promelas) 12.6-72 mg/l; Lepomis macrochirus 13-24 mg/l; guppy (Poecilia reticulata) 28.2-59.3 mg/l; channel catfish (Ictalurus punctatus) 240 mg/l; goldfish (Carassius auratus): 22.8-57.68 mg/l

Crustaceans LC50 (96 h): grass shrimp (Palaemonetes pugio) 9.5 ppm, crab larvae stage (Cancer magister) 28 ppm; shrimp (Crangon franciscorum) 4.3 ppm; daggerblade grass shrimp (Palaemonetes pugio) 9.5 mg/l Algae EC50 (24 h): green algae (Chlorella vulgaris) 245 mg/l (growth); (72 h) green algae (Selenastrum capricornutum) 12.5 mg/l (growth).

WHITE SPIRIT:

For petroleum derivatives:

Chemical analysis for all individual compounds in a petroleum bulk product released to the environment is generally unrealistic due to the complexity of these mixtures and the laboratory expense. Determining the chemical composition of a petroleum release is further complicated by hydrodynamic, abiotic, and biotic processes that act on the release to change the chemical character.

The longer the release is exposed to the environment, the greater the change in chemical character and the harder it is to obtain accurate analytical results reflecting the identity of the release. After extensive weathering, detailed knowledge of the original bulk product is often less valuable than current site-specific information on a more focused set of hydrocarbon components. Health assessment efforts are frequently frustrated by three primary problems: (1) the inability to identify and quantify the individual compounds released to the environment as a consequence of a petroleum spill; (2) the lack of information characterizing the fate of the individual compounds in petroleum mixtures; and (3) the lack of specific health guidance values for the majority of chemicals present in petroleum products. To define the public health implications associated with exposure to petroleum hydrocarbons, it is necessary to have a basic understanding of petroleum properties, compositions, and the physical, chemical, biological, and toxicological properties of the compounds most often identified as the key chemicals of concern. Environmental fate:

Petroleum products released to the environment migrate through soil via two general pathways: (1) as bulk oil flow infiltrating the soil under the forces of gravity and capillary action, and (2) as individual compounds separating from the bulk petroleum mixture and dissolving in air or water. When bulk oil flow occurs, it results in little or no separation of the individual compounds from the product mixture and the infiltration rate is usually fast relative to the dissolution rate. Many compounds that are insoluble and immobile in water are soluble in bulk oil and will migrate along with the bulk oil flow. Factors affecting the rate of bulk oil infiltration include soil moisture content, vegetation, terrain, climate, rate of release (e.g., catastrophic versus slow leakage), soil particle size (e.g., sand versus clay), and oil viscosity (e.g., gasoline versus motor oil).

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 15 of 18 Section 12 - ECOLOGICAL INFORMATION

As bulk oil migrates through the soil column, a small amount of the product mass is retained by soil particles. The bulk product retained by the soil particles is known as "residual saturation". Depending upon the persistence of the bulk oil, residual saturation can potentially reside in the soil for years. Residual saturation is important as it determines the degree of soil contamination and can act as a continuing source of contamination for individual compounds to separate from the bulk product and migrate independently in air or groundwater. Residual saturation is important as it determines the degree of soil contamination and can act as a continuing source of contamination for individual compounds to separate from the bulk product and migrate independently in air or groundwater. When the amount of product released to the environment is small relative to the volume of available soil, all of the product is converted to residual saturation and downward migration of the bulk product usually ceases prior to affecting groundwater resources. Adverse impacts to groundwater may still occur if rain water infiltrates through soil containing residual saturation and initiates the downward migration of individual compounds. When the amount of product released is large relative to the volume of available soil, the downward migration of bulk product ceases as water-saturated pore spaces are encountered. If the density of the bulk product is less than that of water, the product tends to "float" along the interface between the water saturated and unsaturated zones and spread horizontally in a pancake-like layer, usually in the direction of groundwater flow. Almost all motor and heating oils are less dense than water. If the density of the bulk product is greater than that of water, the product will continue to migrate downward through the water table aguifer under the continued influence of gravity. Downward migration ceases when the product is converted to residual saturation or when an impermeable surface is encountered.

As the bulk product migrates through the soil column, individual compounds may separate from the mixture and migrate independently. Chemical transport properties such as volatility, solubility, and sorption potential are often used to evaluate and predict which compounds will likely separate from the mixture. Since petroleum products are complex mixtures of hundreds of compounds, the compounds characterized by relatively high vapor pressures tend to volatilise and enter the vapor phase. The exact composition of these vapors depends on the composition of the original product. Using gasoline as an example, compounds such as butane, propane, benzene, toluene, ethylbenzene and xylene are preferentially volatilised. Because volatility represents transfer of the compound from the product or liquid phase to the air phase, it is expected that the concentration of that compound in the product or liquid phase will decrease as the concentration in the air phase increases. In general, compounds having a vapor pressure in excess of 10-2 mm Hg are more likely to be present in the air phase than in the liquid phase. Compounds characterized by vapor pressures less than 10-7 mm Hg are more likely to be associated with the liquid phase. Compounds possessing vapor pressures that are less than 10-2 mm Hg, but greater than 10-7 mm Hg, will have a tendency to exist in both the air and the liquid phases. Lighter petroleum products such as gasoline contain constituents with higher water solubility and volatility and lower sorption potential than heavier petroleum products such as fuel oil.

Data compiled from gasoline spills and laboratory studies indicate that these light-fraction hydrocarbons tend to migrate readily through soil, potentially threatening or affecting groundwater supplies. In contrast, petroleum products with heavier molecular weight constituents, such as fuel oil, are generally more persistent in soils, due to their relatively low water solubility and volatility and high sorption capacity. Solubility generally decreases with increasing molecular weight of the hydrocarbon compounds. For compounds having similar molecular weights, the aromatic hydrocarbons are more water soluble and mobile in water than the aliphatic hydrocarbons and branched aliphatics are less water-soluble than straight-chained aliphatics. Aromatic compounds in petroleum fuels may comprise as much as 50% by weight; aromatic compounds in the C6-C13, range made up approximately 95% of the compounds dissolved in water.

Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Unlike other fate processes that disperse contaminants in the environment, biodegradation can eliminate the contaminants without transferring them across media. The final products of microbial degradation are carbon dioxide, water, and microbial biomass. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Generally the straight chain hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilisation and thus are unavailable in most environments; n-alkanes

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 16 of 18 Section 12 - ECOLOGICAL INFORMATION

in the C1-C4 ranges are biodegradable only by a narrow range of specialized hydrocarbon degraders; and nalkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. A large proportion of the water-soluble fraction of the petroleum product may be degraded as the compounds go into solution. As a result, the remaining product may become enriched in the alicyclics, the highly branched aliphatics, and PAHs with many fused rings.

In almost all cases, the presence of oxygen is essential for effective biodegradation of oil. Anaerobic decomposition of petroleum hydrocarbons leads to extremely low rates of degradation. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. The moisture content of the contaminated soil will affect biodegradation of oils due to dissolution of the residual compounds, dispersive actions, and the need for microbial metabolism to sustain high activity. The moisture content in soil affects microbial locomotion, solute diffusion, substrate supply, and the removal of metabolic by-products. Biodegradation rates in soils are also affected by the volume of product released to the environment. At concentrations of 0.5% of oil by volume, the degradation rate in soil is fairly independent of oil concentrations. However, as oil concentration rises, the first order degradation rate decreases and the oil degradation half-life increases. Ultimately, when the oil reaches saturation conditions in the soil (i.e., 30-50% oil), biodegradation virtually ceases.

Excessive moisture will limit the gaseous supply of oxygen for enhanced decomposition of petroleum hydrocarbons. Most studies indicate that optimum moisture content is within 50-70% of the water holding capacity.

All biological transformations are affected by temperature. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs. The presence of oil should increase soil temperature, particularly at the surface. The darker color increases the heat capacity by adsorbing more radiation. The optimal temperature for biodegradation to occur ranges from 18 C to 30 C. Minimum rates would be expected at 5 C or lower.

WATER:

Ecotoxicity				
Ingredient	Persistence:	Persistence: Air	Bioaccumulation	Mobility
	Water/Soil			
Dunlop Carpet Adhesive	No Data	No Data		
	Available	Available		
toluene	LOW	MED	LOW	MED
white spirit	No Data	No Data		
	Available	Available		

Section 13 - DISPOSAL CONSIDERATIONS

• Recycle wherever possible or consult manufacturer for recycling options.

- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Hazard Alert Code: MODERATE

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 17 of 18

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM: None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: UN, IATA, IMDG

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE None

REGULATIONS

Regulations for ingredients

toluene (CAS: 108-88-3) is found on the following regulatory lists;

"Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (Domestic water supply - organic compounds)","Australia - Australian Capital Territory -Environment Protection Regulation: Pollutants entering waterways taken to cause environmental harm (Aquatic habitat)","Australia - Australian Capital Territory Environment Protection Regulation Ecosystem maintenance -Organic chemicals - Non-pesticide anthropogenic organics","Australia - Australian Capital Territory Environment Protection Regulation Pollutants entering waterways - Domestic water quality","Australia Exposure Standards","Australia Hazardous Substances","Australia High Volume Industrial Chemical List (HVICL)", "Australia Illicit Drug Reagents/Essential Chemicals - Category III","Australia Inventory of Chemical Substances (AICS)", "Australia National Pollutant Inventory", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix I","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6","IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk","IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs","International Fragrance Association (IFRA) Standards Prohibited","WHO Guidelines for Drinking-water Quality - Guideline values for chemicals that are of health significance in drinking-water"

white spirit (CAS: 8052-41-3) is found on the following regulatory lists;

"Australia Exposure Standards", "Australia Hazardous Substances", "Australia Inventory of Chemical Substances (AICS)", "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)", "IMO IBC Code Chapter 17: Summary of minimum requirements", "IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO", "International Council of Chemical Associations (ICCA) - High Production Volume List"

water (CAS: 7732-18-5) is found on the following regulatory lists;

"Australia Inventory of Chemical Substances (AICS)","IMO IBC Code Chapter 18: List of products to which the Code does not apply","International Fragrance Association (IFRA) Survey: Transparency List"

No data for Dunlop Carpet Adhesive (CW: 4661-32)

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 15-Oct-2010 NC317TCP

Hazard Alert Code: MODERATE

CHEMWATCH 4661-32 Version No:4 CD 2011/2 Page 18 of 18

Section 16 - OTHER INFORMATION

REPRODUCTIVE HEALTH GUIDELINES

Ingredient	ORG	UF	Endpoint	CR	Adeq TLV
toluene	9.6 mg/m3	10	D	NA	-

■ These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive American Industrial Hygiene Association Journal 57: 641-649 (1996).

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 15-Oct-2010 Print Date: 6-Jul-2011

This is the end of the MSDS.